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The incompressible boundary layer in the corner formed by two intersecting, semi-
infinite planes is investigated, when the free-stream flow, aligned with the corner,
is taken to be of the form U∞F(x), x representing the non-dimensional streamwise
distance from the leading edge. In Dhanak & Duck (1997) similarity solutions for
F(x) = xn were considered, and it was found that solutions exist for only a range
of values of n, whilst for ∞ > n > −0.018, approximately, two solutions exist. In
this paper, we extend the work of Dhanak & Duck to the case of non-90◦ corner
angles and allow for streamwise development of solutions. In addition, the effect of
transpiration at the walls of the corner is investigated. The governing equations are
of boundary-layer type and as such are parabolic in nature. Crucially, although the
leading-order pressure term is known a priori, the third-order pressure term is not,
but this is nonetheless present in the leading-order governing equations, together with
the transverse and crossflow viscous terms.

Particular attention is paid to flows which develop spatially from similarity solu-
tions. It turns out that two scenarios are possible. In some cases the problem may
be treated in the usual parabolic sense, with standard numerical marching proce-
dures being entirely appropriate. In other cases standard marching procedures lead
to numerically inconsistent solutions. The source of this difficulty is linked to the
existence of eigensolutions emanating from the leading edge (which are not present in
flows appropriate to the first scenario), analogous to those found in the computation
of some two-dimensional hypersonic boundary layers (Neiland 1970; Mikhailov et
al. 1971; Brown & Stewartson 1975). In order to circumvent this difficulty, a dif-
ferent numerical solution strategy is adopted, based on a global Newton iteration
procedure.

A number of numerical solutions for the entire corner flow region are presented.

1. Introduction
The viscous flow along a corner formed by two intersecting flat plates has received

a good deal of attention over the years, due to the importance of flows associated
with wing–body junctions in numerous aerospace (and other) applications. The first
fully rigorous treatment of such flows at high Reynolds numbers was made by
Rubin (1966), who presented the structure of the solution for problems of this type.
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Perhaps the crucial feature of the problem highlighted in that paper is that the third-
order pressure term, generally neglected in classical, two-dimensional boundary-layer
theory, plays a pivotal role in corner regions, and is coupled at leading order with
other, convective and viscous quantities. Similarity solutions for situations involving
constant free-stream velocities (in which the streamwise development of the flow may
be scaled into the solution), have been calculated by a number of authors (including
Rubin 1966; Pal & Rubin 1971; Rubin & Grossman 1971; Desai & Mangler 1974;
Ghia 1975; Zamir 1973).

The condition of constant free-stream velocity was relaxed by Dhanak & Duck
(1997, hereafter referred to as DD) to consider spatially varying flows with free-stream
velocity of the form xn, x denoting the non-dimensional distance from the leading
edge, as in the classical Falkner–Skan problem in two-dimensional boundary-layer
theory. In DD, we showed that (i) solutions are not possible for all values of n,
and (ii) a primary solution branch exists in parameter space for ∞ > n > −0.018,
approximately, for which two solutions exist. These results are consistent with those
of Ridha (1992), although that work is incomplete, in that (i) only a single solution
branch was identified, and (ii) it was claimed that solutions only existed over a limited,
finite range of n; further, only limiting solutions (valid for large distances from the
corner) were considered. We retain the terminology used in DD, by referring to
the upper and lower solution branches in modified wall vorticity–n space (see figure
1a of the present paper and figure 2c of DD). We show that in the zero pressure
gradient case (i.e. with n = 0) in addition to the solution corresponding to Blasius-
type far-field conditions (the conditions imposed in most previous studies), a second
solution exists, comprising an accelerating, jet-like crossflow, directed away from the
corner.

The question of breakdown of symmetry about the corner-bisector line was also
addressed by DD. This feature was found to further complicate the flow, significantly
modifying the range of the parameter n for which similarity solutions exist, and also
causing further complication (including giving rise to additional solutions) to the
solution branches. A heuristic approach to the stability of the flow in the corner
region was also undertaken, using the ideas of Lakin & Hussaini (1984) and Dhanak
(1993); this suggested that a favourable pressure gradient has a stabilizing effect
while an adverse pressure gradient is destabilizing, the critical Reynolds number
for the local flow becoming larger with increasing distance from the corner in all
cases. An inviscid stability analysis has been undertaken by Balachandar & Malik
(1995).

Taken together, these features could well go some way in explaining the difficulties
noted by Zamir (1981) in observing similarity-type solutions in experiments. Certainly
the results of DD suggest that any slight misalignment of the corner in an experiment
could substantially disrupt the overall flow pattern in these regions. Additionally,
Zamir (1981) highlights the wide spread in the available numerical results.

The purpose of the current paper is to consider more general forms of the stream-
wise velocity variation, taking the solutions of the type discussed in DD as upstream
conditions at the leading edge. Further, we generalize consideration to arbitrary, non-
90◦, corner angles using the ideas of Wilkinson & Zamir (1984). We also investigate
the effects of transpiration through the walls in the presence of non-zero pressure
gradient.

The layout of the paper is as follows. In § 2, we formulate the problem, initially
following the approach of Rubin (1966), but then relaxing the similarity constraint
by allowing general streamwise variations of the solution, although our methodology
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is to use the similarity solutions of DD as upstream conditions to the problem. In
§§ 3 and 4, we consider the nature of solutions at large distances from the corner,
focusing our attention on the effects of wall transpiration, including both wall suction
and blowing in § 3 and the similarity constraint is relaxed in § 4; these solutions are
used as far-field boundary conditions in the full numerical problem, considered in § 5.
In § 6 we present our conclusions.

2. Formulation
Consider two semi-infinite planes, intersecting, in Cartesian coordinates (Lx, Ly, Lz),

along Ox with the origin located at the leading edge; L is a reference lengthscale
(generally taken to be that arising from the scale of the freestream velocity variation).
One plane is given by y = 0, the other by z = y cot α. The steady velocity is written
U∞(u, v, w), where far from both planes the x-component of velocity is U∞F(x).

We initially follow the approach of Rubin (1966), guided by the development of
classical two-dimensional boundary-layer theory, by writing

u = Û(x, Y , Z) + · · · ,
v = Re−1/2V̂ (x, Y , Z) + · · · ,
w = Re−1/2Ŵ (x, Y , Z) + · · · ,
p = P0(x) + Re−1/2P1(x) + Re−1P̂ (x, Y , Z) + · · · ,

 (2.1)

where ρU2∞p denotes the pressure (ρ being the fluid density, assumed constant), the
Reynolds number Re = U∞L/ν and

Y = Re1/2y, Z = Re1/2z, (2.2)

are the scaled boundary-layer variables; P0 and P1 can easily be shown to be inde-
pendent of Y and Z .

Substituting (2.1) into the Navier–Stokes and continuity equations, and retaining
the leading-order terms in Re yields

ÛÛx + V̂ ÛY + Ŵ ÛZ = ÛY Y + ÛZZ − P0x , (2.3)

ÛV̂ x + V̂ V̂ Y + Ŵ V̂ Z = V̂ Y Y + V̂ ZZ − P̂ Y , (2.4)

ÛŴ x + V̂ Ŵ Y + ŴŴZ = Ŵ Y Y + ŴZZ − P̂ Z , (2.5)

Ûx + V̂ Y + ŴZ = 0. (2.6)

The boundary conditions are that Û = Ŵ = 0, V̂ = Vw(x, Z) on the wall Y = 0
and Û = V̂ sin α+ Ŵ cos α = 0, Ŵ sin α− V̂ cos α = Vw(x, Y cosec α) on Z = Y cot α.
As the free stream is approached, Û → F(x), and we have from (2.3) that to leading
order the pressure gradient is given by

P0x = −FxF. (2.7)

The O(Re−1) correction to the pressure is crucial in the following analysis, but is
unknown a priori. Other conditions, in particular those at large distances from the
corner, but close to either wall, will be discussed later.

In DD, the analysis was restricted to F(x) of the form xn (and in most other
previous studies to F(x) = constant); here we relax this constraint, and instead write

F(x) = xnf∗(x), (2.8)
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with f∗(0) = 1. This implies that in the limit x → 0 we obtain the similarity
solutions of DD which provide upstream/initial conditions for streamwise-developing
solutions.

The next step in the analysis is to introduce similarity variables in the streamwise
and crossflow directions. It should be noted that this does not preclude the study of
non-similarity solutions, provided f∗(x) is non-constant, but rather leads to a more
natural treatment of conditions as x→ 0.

We write

Û = xnU∗(ξ, η∗, ζ∗), (2.9)

V̂ = x(n−1)/2V ∗(ξ, η∗, ζ∗) =
x(n−1)/2

√
2

[
(1− n)η∗U∗ − Φ∗] , (2.10)

Ŵ = x(n−1)/2W ∗(ξ, η∗, ζ∗) =
x(n−1)/2

√
2

[
(1− n)ζ∗U∗ −Ψ ∗] , (2.11)

P0 = − 1
2
x2nf2(ξ), (2.12)

P̂ = xn−1P (ξ, η∗, ζ∗), (2.13)

where

ξ = x(1−n)/2, η∗ = Y /
√

2ξ, ζ∗ = Z/
√

2ξ, f∗(x) = f(ξ). (2.14)

We introduce a further variable, θ, which denotes a modified vorticity function,
namely

θ∗ = Ψ ∗η∗ − Φ∗ζ∗ . (2.15)

Note that we may write

Φ∗ = (1− n)η∗U∗ − √2V ∗, Ψ ∗ = (1− n)ζ∗U∗ − √2W ∗. (2.16)

We now introduce the variables suggested by Wilkinson & Zamir (1984) (also
utilized for similarity solutions for flows with pressure gradient by Abdulwanis 1997),
for arbitrary corner angle α,

Φ∗(ξ, η∗, ζ∗) = Φ(ξ, η, ζ), (2.17)

Ψ ∗(ξ, η∗, ζ∗) = Φ cot α+Ψcosec α, (2.18)

θ∗(ξ, η∗, ζ∗) = θ(ξ, η, ζ), (2.19)

U∗(ξ, η∗, ζ∗) = U(ξ, η, ζ), (2.20)

η∗ = η sin α, (2.21)

ζ∗ = η cos α+ ζ. (2.22)

Implementing these transformations in (2.3)–(2.6) and eliminating the (third-order)
pressure term yields the following set of equations:

2U sin α+ (1− n)ξ sin αUξ = Φη +Ψζ, (2.23)

Uηη +Uζζ + 2nf2 sin2 α+ (1− n) sin2 αξffξ = 2nU2 sin2 α+ (1− n)ξ sin2 αUUξ

−ΦUη sin α−ΨUζ sin α+ 2 cos αUζη, (2.24)

θ sin2 α = Ψη − Φζ + cos α(Φη −Ψζ), (2.25)
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θηη + θζζ − 2θηζ cos α+ 2(1− n2) sin α[(ζ cos α+ η)UUζ − (η cos α+ ζ)UUη]

+ Φθη sin α+Ψθζ sin α+ 2Uθ sin2 α+ (n− 1)ξ{−θUξ sin2 α−UζΦξ

+ Uθξ sin2 α+ ΦξUη cos α+ΨξUη −ΨξUζ cos α} = 0. (2.26)

The boundary conditions are then

U(ξ, η = 0, ζ) = U(ξ, η, ζ = 0) = 0,

Φ(ξ, η = 0, ζ) = Φw(ξ, ζ), Ψ (ξ, η = 0, ζ) = −Φw(ξ, ζ) cos α,

Ψ (ξ, η, ζ = 0) = Φw(ξ, η), Φ(ξ, η, ζ = 0) = −Φw(ξ, η) cos α,

 (2.27)

together with

θ(ξ, η →∞, ζ →∞)→ 0, (2.28)

and

U(ξ, η →∞, ζ →∞)→ f(ξ), (2.29)

with η/ζ = O(1). In the above we have written

Vw = −x
n−1

√
2
Φw(ξ, ζ). (2.30)

We shall generally assume throughout that Φw(ξ, ζ) = O(1) as ζ →∞.
The advantage of the choice of variables, in particular (2.17)–(2.22), is now clear,

namely that in the case of symmetrical flows, symmetry is retained with respect to
the (η, ζ) coordinate system. Thus

θ(ξ, η, ζ) = −θ(ξ, ζ, η), U(ξ, η, ζ) = U(ξ, ζ, η), Φ(ξ, η, ζ) = Ψ (ξ, ζ, η). (2.31)

Note that on setting α = 90◦ and ξ = 0 in the system (2.23)–(2.26) we recover the
system (2.9)–(2.12) in DD, and consequently the latter provide the upstream conditions
at ξ = 0. In DD, asymmetrical cases were also considered, however here we confine
our attention to symmetrical flows in order not to over-complicate the choice of
parameter space under consideration. Henceforth, we therefore focus attention on
flow in the region η 6 ζ; the flow in the region η > ζ can be deduced from symmetry
considerations. Further, in DD it was very clear that the nature of the ζ → ∞ (or
η →∞) solutions is absolutely crucial (a) to understand the nature of solutions in the
parameter space and (b) for the accurate imposition of far-field boundary conditions.
It turns out that this is equally true here.

Suppose that we consider the limit ζ →∞, η 6 ζ. In this limit we expect

U(ξ, η, ζ) = U0(ξ, η) +
1

ζ
U1(ξ, η) + O(ζ−2), (2.32)

Φ(ξ, η, ζ) = Φ0(ξ, η) +
1

ζ
Φ1(ξ, η) + O(ζ−2), (2.33)

Ψ (ξ, η, ζ) = ζΨ0(ξ, η) +Ψ1(ξ, η) + O(ζ−1), (2.34)

θ(ξ, η, ζ) = ζθ0(ξ, η) + θ1(ξ, η) + O(ζ−1). (2.35)

The leading-order terms in the expansions, when substituted into the system (2.23)–
(2.26) yield

2U0 sin α+ (1− n)ξ sin αU0ξ = Φ0η +Ψ0, (2.36)
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U0ηη + 2n sin2 αf2 + ξ(1− n) sin2 αffξ = 2n sin2 αU2
0

+ξ(1− n) sin2 αU0U0ξ − sin αΦ0U0η, (2.37)

sin2 αθ0 = Ψ0η, (2.38)

θ0ηη − 2 sin α(1− n2)U0U0η + sin αθ0ηΦ0 + sin αΨ0θ0 + 2 sin2 αU0θ0

+(n− 1)ξ{− sin2 αθ0U0ξ + sin2 αU0θ0ξ +Ψ0ξU0η} = 0, (2.39)

subject to the following boundary conditions:

U0(ξ, 0) = Ψ0(ξ, 0) = 0, (2.40)

Φ0(ξ, 0) = g(ξ), (2.41)

and

U0 → f(ξ), θ0 → 0 as η →∞. (2.42)

Here we have assumed that Φw(ξ, ζ) → g(ξ) as ζ → ∞. The above, coupled with
symmetry considerations, also implies that as η →∞,

Φ0η, Ψ0 → f(ξ) sin α+ 1
2
(1− n)ξ sin αfξ. (2.43)

If we replace η by η/ sin α and Ψ0 by sin αΨ0 (other variables being left unaltered)
in the system (2.36)–(2.43) then the sin α (and hence all α) terms are removed from the
system, and hence in the limit of ζ → ∞, to leading order it is sufficient to consider
merely the case α = 90◦. In Appendix A we show that it is possible to categorize
different families of solution in terms of θ0η(η = 0), which if g(ξ) = 0 gives

θ0η(η = 0) = sin α{[nf(ξ) + 1
2
(1− n)ξfξ]2 − 1

2
ξf[(1− n2)fξ + ξ(1− n)2fξξ]}. (2.44)

The nature of the solutions of the system (2.36)–(2.43) turns out to be of much
interest, but a discussion of this will be deferred until later in the paper. However we
note that there is some similarity here with the parabolized Navier–Stokes equations
approach, frequently employed in computational fluid dynamics (see Rubin 1982,
for example), although that technique is not strictly a rational procedure, and this
is reflected in a number of issues linked to numerical stability (linked to the fact
that an elliptic system is treated parabolically); the present scheme, currently under
discussion, is a totally rational procedure.

In order to accurately compute the full system (2.23)–(2.26) it is also necessary to
compute the next-order terms in the expansions (2.32)–(2.35). This, through straight-
forward analysis, leads to the conclusion that U1 ≡ Φ1 ≡ 0, whilst Ψ1 and θ1 are
described by

θ1 sin2 α = Ψ1η + cos α(Φ0η −Ψ0), (2.45)

θ1ηη + θ1ηΦ0 sin α+Ψ1θ0 sin α− 2θ0η cos α+ 2η(n2 − 1) sin α cos αU0U0η

+ (n− 1)ξ{−θ1U0ξ sin2 α+U0θ1ξ sin2 α+ Φ0ξU0η cos α

+ Ψ1ξU0η}+ 2 sin2 αU0θ1 = 0, (2.46)

subject to

Ψ1(0, ξ) = −g(ξ) cos α, (2.47)

θ1 → 0, Ψ1 → Φ0 − ηΦ0η (2.48)

as η →∞.
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The question of the existence of non-integer powers of ζ arising in the expansions
(2.32)–(2.35) was addressed by Pal & Rubin (1971) and DD (no relevant terms were
found to exist) and will not be discussed here. In the following section we go on to
consider solutions for U0(ξ → 0, η), Φ0(ξ → 0, η), Ψ0(ξ → 0, η) and θ0(ξ → 0, η), i.e.
similarity solutions, with emphasis on the effects of wall transpiration.

3. The nature of the similarity solutions with wall transpiration in the limit
ζ →∞

Here we consider the effect of suction/blowing normal to the wall on the nature
of the similarity solutions in the far field (i.e. as ζ → ∞ with ξ = 0, considering
the leading-order terms in (2.32)–(2.35)). For this, we consider non-zero values of the
transpiration parameter g(0) (see (2.41)), and investigate the effects of varying this
parameter and the pressure gradient parameter, n. Note that g(0) < 0 corresponds
to wall blowing, whilst g(0) > 0 implies wall suction, and that we may utilize the
aforementioned transformations to enable us to replace α by 90◦.

Figure 1(a–c) shows the variations of U0η(η = 0) and θ0(η = 0) with n, for selected
values of g(0). The significance of the dashed and solid lines will be explained in the
following section. Note that from DD we certainly expect other solution branches
to exist (in particular for negative values of n). The no-transpiration case results are
shown in figure 1(a) (g(0) = 0) and will serve as a reference; two-dimensional results
correspond to n = 0 and may be identified as the case with U0η(η = 0) = θ0(η = 0).
For g(0) = 0, this is the lower n = 0 point in the U0η(η = 0) distribution and the
upper n = 0 point in the θ0(η = 0) distribution.

The effect of increasing g(0) (i.e. suction) is shown in figure 1(a). An important
particular case seems to be g(0) = 0.45658 (approximately), where the nose of
the primary solution branch reaches n = 0 exactly. Consequently we see that for
g(0) > 0.45658 (approximately), the two-dimensional point moves from the lower
(upper) portion of the U0η(η = 0) (θ0(η = 0)) curve to the upper (lower) portion. The
overall picture may be clarified by inspection of figure 2, showing the variation of
U0η(η = 0) (solid line) and θ0(η = 0) (dashed line) with g(0) for n = 0. This figure
clearly shows the coincidence point at g(0) = 0.45658 (approximately). The large
suction limit of g(0) positive and increasing with n = 0 is considered in Appendix
B. Finally, with regard to figure 2, we note that it is not possible to obtain reversed
flow if n = 0, i.e. reversed flow is not possible without an adverse pressure gradient,
a conclusion that seems entirely consistent with physical expectation.

Consider now the effect of wall blowing (g(0) < 0). As this is increased, the small
solution loop close to the origin is seen to expand (g(0) = −0.44 in figure 1b), whilst
a loop appears in the θ0(η = 0) distribution of the primary solution branch. Increased
blowing results in a merger of these two solution branches (close to g(0) = −0.445),
the hybrid branch terminating at the origin, with a cusp-like behaviour, although
as the blowing is increased further, this cusp-like behaviour diminishes (figure 1c,
g(0) = −1). As the blowing is further increased, a marked terminal point, with a cusp,
forms at the origin (g(0) = −1.25 in figure 1c), and this solution branch exists only
for n > 0. The metamorphosis of the solution for the important case n = 0 is made
clearer by inspection of figure 2. From this we see no less than four critical values of
g(0), in this case. At all these critical points, the limit is U0η(η = 0) = θ0(η = 0)→ 0.
These points are analysed in some detail in Appendix C, and correspond physically to
flows involving massively displaced shear layers, above a region of relatively stagnant
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Figure 1(a). For caption see page 134.

flow lying above the wall; these represent a class of (generally) three-dimensional
separated flows.

The small loop close to the origin in the g(0) = 0 case appears to be quite a generic
feature, with both the upper and lower portions of this solution branch terminating
at the origin; indeed, the limiting case for g(0) = 0, n→ 0− is analysed in Appendix
D, which suggests again a class of flow, including three-dimensional separated flows,
which are not unrelated to the flows in the region of the terminus points of figure 2
(discussed in Appendix C).

4. The nature of the non-similarity solutions in the limit ζ →∞
In this section we focus our attention on (numerical) solutions to the system (2.36)–

(2.43) for cases with no transpiration. In DD it was shown that the behaviour of
the similarity solutions in the limit ζ → ∞ was vital in understanding the existence,
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Figure 1(b). For caption see page 134.

location and nature of solutions, and also in obtaining accurate solutions to the full
problem; this is equally true here in the case of non-similarity flows, in which we allow
the flow to develop in the streamwise (ξ) direction. In all cases, we take our starting
solution (i.e. initial conditions) as computed from (2.36)–(2.43) with ξ = 0, which
are exactly those solutions computed in DD. Here we shall confine our attention
exclusively to the primary solution branch (i.e. the branch that exists for −0.018 . . . <
n < ∞). Since the system (2.36)–(2.43) is parabolic in ξ, standard numerical practice
suggests that starting with the given solution at ξ = 0 as the upstream condition,
a marching procedure forward in ξ should be appropriate. As noted in § 2, for this
aspect of the work we may set α = 90◦ without any loss of generality.

Standard second-order central differencing in η was employed, together with a
Crank–Nicolson procedure in ξ (also of second-order accuracy) and Newton iteration
was employed to handle the inherent nonlinearity of the system.
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Figure 1 (a–c). U0η(η = 0) and θ(η = 0) distributions, varying n, g(0) as indicated.

4.1. Lower primary θ0(η = 0) solution branch

We consider, first, initial conditions based on the lower θ0(η = 0) portion of the pri-
mary solution branch. Figure 3(a) shows distributions of U0η(ξ, η = 0),W0η(ξ, η = 0)
and, as a measure of boundary-layer displacement effects, δ∗0 = [Φ0 − ηΨ0]η→∞, for
the particular case n = 0, with

f(ξ) = 2− e−ξ. (4.1)

This is a model of an accelerating free stream, increasing from unity to two. We
are of course quite at liberty to specify the free-stream variation of the streamwise
component of the flow. This is equivalent to specifying the pressure gradient in
the streamwise direction, which is precisely the procedure followed in classical two-
dimensional boundary-layer calculations. Likewise, in practical situations the pressure
distribution could be obtained as a result of an outer (inviscid) calculation, or even
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from experimental measurements. It is seen that the solution changes continuously,
and the following conditions link downstream to upstream conditions:

U0η(ξ →∞, η = 0)→ 2
√

2U0η(ξ = 0, η = 0), (4.2)

W0η(ξ →∞, η = 0)→ 2
√

2W0η(ξ = 0, η = 0), (4.3)

δ∗0(ξ →∞)→ √2δ∗0(ξ = 0), (4.4)

results that can be inferred from the governing equations (2.36)–(2.43) by replacing
f = 1 by f = 2, and rescaling. Therefore the flow accelerates from one state on
the lower θ0(η = 0) portion of the solution branch to the corresponding (i.e. scaled)
point on the same solution branch. In this case there was no evidence of a transition
between solution branches; indeed this was a feature common in all computations
emanating from the lower of the solution branches.

Figure 3(b) shows the same free-stream development as in figure 3(a), but with
n = 0.35; again conditions (4.2)–(4.4) are seen to hold, indicating that this solution



136 P. W. Duck, S. R. Stow and M. R. Dhanak

0.5

2.0

1.5

1.0

0

–0.5

0 4 12 20

n

U0g(g = 0)

–1.0
8 16

d0
*

W0g(g = 0)

(a)

2

4

3

1

0 4 12 20

n

U0g(g = 0)

8 16

d0
*

W0g(g = 0)

(b)

Figure 3. Streamwise development of ζ →∞ solution, (a) n = 0 and (b) n = 0.35, lower solution,
f(ξ) = 2− e−ξ .

also remains on the lower portion of the solution branch; indeed we have not been
able to find examples where a lower-branch solution ends up on the upper-solution
branch.

One aspect of the results worth noting is that in spite of the rapid exponential
asymptote of (4.1) as ξ increases, this is not mirrored in the quantities shown in figure
3(a, b), inspection of which suggests a likely algebraic asymptote in this limit; this effect
is perhaps more marked in the n = 0 case shown in figure 3(a). An explanation for
this is as follows (cf. Libby & Fox 1963): suppose the basic state denoted by subscript
00 below has perturbation eigensolutions. In particular (assuming Re {λ} < 0) as
ξ →∞ let

U0(ξ, η) = U00(η) + ξλũ+ · · · , (4.5)

Φ0(ξ, η) = Φ00(η) + ξλφ̃+ · · · , (4.6)

Ψ0(ξ, η) = Ψ00(η) + ξλψ̃ + · · · , (4.7)

θ0(ξ, η) = θ00(η) + ξλθ̃ + · · · . (4.8)

Substitution of these expansions into (2.36)–(2.43) leads to the following set of
perturbation equations:

2ũ+ (1− n)λũ = φ̃η + ψ̃, (4.9)

ũηη = 4nU00ũ+ λ(1− n)U00ũ− φ̃U00η − ũηΦ00, (4.10)

θ̃ = ψ̃η, (4.11)

θ̃ηη − 2(1− n2)
[
U00ũη + ũU00η

]
+ θ̃ηΦ00 + θ00ηφ̃+ ψ̃θ00 + 2ũθ00

+Ψ00θ̃ + 2U00θ̃ + (n− 1)λ{−θ00ũ+U00θ̃ + ψ̃U00η} = 0, (4.12)

subject to the boundary conditions

ũ(0) = φ̃(0) = ψ̃(0) = 0, (4.13)
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ũ, ψ̃, θ̃ → 0 as η →∞. (4.14)

We take U00(η) = U0(ξ = 0, η), Φ00(η) = Φ0(ξ = 0, η), Ψ00(η) = Ψ0(ξ = 0, η) and
θ00(η) = θ0(ξ = 0, η), i.e. the similarity solutions presented in DD (although these are
strictly far-downstream values, we have seen that in the above these are merely scaled
functions of the leading-edge solutions if f(ξ)→ constant as ξ →∞).

The system (4.9)–(4.14) was tackled using two independent approaches. In the first,
the system was approximated by second-order finite differences, and the complete
algebraic eigenvalue problem was solved using a QZ algorithm. In the second, a local
search scheme based on Runge–Kutta methods was implemented. Frequently the
former method was used to provide starting estimates for the latter (more accurate)
method. The real parts of the eigenvalues are shown in figure 4. The region marked
‘lower branch’ corresponds to (1 − n)λr < 0, where λr = Re {λ} (the upper branch
results will be discussed below). Here it is appropriate to study (1 − n)λr , which is
physically more meaningful in terms of the downstream development of the solution
in physical (i.e. x) space, rather than computational (i.e. ξ) space. It is found that in
the range of n shown: (i) there are many (almost certainly an infinite number) real
modes, all with Re {(1− n)λ} < 0; in figure 4 we have just shown the first two modes
of smallest magnitude, (ii) at the lowest value of the range of n for which this family
of solutions exists (n ≈ −0.018), the eigenvalue with smallest magnitude approaches
zero. Note that the eigenvalue of smallest magnitude will be primarily responsible for
controlling the downstream flow behaviour. These results go some way in explaining
the slow, algebraic decay encountered downstream, especially in the case of n = 0
(figure 3a) for which we see that the first eigenvalue |λ| is quite small. These results
do raise questions about the limit as n → −0.018 (approximately), but these will be
deferred until later.

We now turn our attention to the case

f(ξ) = 2e−ξ − 1. (4.15)

Again, our comments regarding (4.1) are applicable, namely that this is a model free-
stream variation (which we are at liberty to specify), (4.15) representing a decelerating
flow. Figure 5(a) shows results for the case n = 0.35. The flow is seen to reach
a reversal point at which U0η(η = 0) = 0 at ξ ≈ 0.42. Figure 5(b) shows the



138 P. W. Duck, S. R. Stow and M. R. Dhanak

0.5

1.5

1.0

0

–0.5

0 0.1

n

U0g(g = 0)

–1.0 d0
*

W0g(g = 0)

(a)

–1

1

0

–2

0 0.04 0.08

n

U0g(g = 0)

0.12

d0
*

W0g(g = 0)

(b)

–1.5
0.2 0.3 0.4 0.5

–3

Figure 5. Streamwise development of ζ →∞ solution, (a) n = 0.35 and (b) n = 0, lower solution,
f(ξ) = 2e−ξ − 1.

2.0

0 0.2 0.4 0.6

Dn =10–3

n

U
0g

(g
=

0)

1.8

1.6

1.4

1.2

1.0

Dn =10–4

Dn =10–5

Figure 6. Streamwise development of U0η(η = 0) (ζ →∞ solution), n = 0.35 upper solution.

corresponding results for n = 0; in this case, flow reversal occurs at ξ ≈ 0.12. All
the computed quantities (including those in figure 5b) suggested that flow reversal
occurs in a singular fashion, culminating with a Goldstein (1948) singularity, as
is always encountered in analogous two-dimensional computations of separating
boundary layers with prescribed (adverse) pressure gradients. In this respect we have
that U0η(η = 0) = O((ξs − ξ)1/2) as the separation point ξs is approached; our
numerical results were entirely consistent with this behaviour. As with fully two-
dimensional flows, it is not possible or appropriate to extend these calculations past
ξs.
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4.2. Upper θ0(η = 0) solution branch

Computations for an accelerating flow, with f(ξ) described by (4.1) and n = 0.35
(upper θ0(η = 0) solution branch) are shown in figure 6, where we present results
for U0η(η = 0). These results were all obtained using a transverse grid ∆η = 0.025,
extending out to η∞ = 160 (a much finer and more extensive grid than necessary for
any of the lower solution branch computations discussed above). As indicated in the
figures, three grids in ξ were taken, namely ∆ξ = 10−3, 10−4 and 10−5, again all much
smaller than necessary for any of the lower-branch solutions described previously.
In spite of the smallness of these ∆ξ, we see a drastic variation in solutions as ∆ξ
varies. Variation of other numerical parameters produced similar spectacular changes
in solution, and other computed quantities (including W0η(η = 0) and δ∗0) exhibited
similar behaviours to the streamwise wall shear stress. In all cases, all the indications
were that these difficulties emanated from the leading edge (i.e. ξ = 0).

In order to explain these difficulties, we re-consider the expansions (4.5)–(4.8), but
this time instead consider the limit ξ → 0, and consequently we seek eigenvalues
for which Re {(1 − n)λ} > 0. The system (4.9)–(4.12) was then re-investigated, using
precisely the same numerical procedures as above, but rather focusing attention on
the upper portion of the primary solution branch. Results for Re {(1 − n)λ} are
shown in figure 4 in the region marked ‘upper branch’ and corresponds to the region
(1 − n)λr > 0. The following general features were observed: (i) on this solution
branch, a single, real, positive (1 − n)λ was found to exist; (ii) the genesis of this
particular eigenvalue occurred at n = −0.018 (approximately), i.e. at the lowest
extremum of the solution branch; (iii) many (probably an infinity of) real, negative
(1− n)λ were also found to exist. Interestingly, the single positive eigenvalue connects
to the downstream root with smallest magnitude (which is primarily responsible for
controlling the downstream asymptote of the solution), as discussed above. We note
that the particular result for λ for the case of Blasius flow (n = 0) agrees precisely
with the result of Luchini (1996) in his study of the spatial (steady) stability of the
Blasius boundary layer; in particular he proposed his solution as a candidate for an
initial linear mechanism that leads to bypass transition. That work would also seem
to have some link to the response of Blasius boundary layers to free-stream vorticity
(Bertolotti 1997; Bertolotti & Kendall 1997).

The reason for the difficulties faced in the computation of the upper-branch family
of solutions is now clear, namely the occurrence of these leading-edge eigensolutions
which render any marching process non-unique/ill-posed. Indeed, in spite of the
parabolic nature of the equations, the problem must contain some ‘upstream influence’,
i.e. the far downstream nature of the flow affects the flow upstream. Note that this
is somewhat different from the situation encountered in pseudo-parabolic problems
(see Phillips 1996, for example), where sign changes in coefficients of the differential
equation lead to type changes of the differential equation. This is not the situation
here (certainly if the flow is not reversed). A strongly analogous situation is found
in the computation of certain two-dimensional hypersonic boundary layer problems
(Neiland 1970; Mikhailov, Neiland & Sychev 1971 and Brown & Stewartson 1975),
where some similar characteristics for the results for leading-edge eigenvalues are
also found. We can now reveal the significance of the broken and solid lines in our
similarity, transpiration results presented in figure 1(a–c). Here, solid lines correspond
to regimes where only negative values of (1− n)λr exist, and thus standard parabolic
marching techniques may in principle be used in progressing the solution away
from these similarity forms; dashed lines refer to flow profiles which exhibit positive
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(1 − n)λr . In general, for all values of suction and blowing, it appears that there is
at most one solution which has Re {λ(1 − n)} < 0 for all eigenvalues for a given
value of n. Further, generally, the solution with the largest U0η(η = 0) corresponds
to the branch without positive (1 − n)λr . In certain, limited, regions of parameter
space, multiple eigenvalues with positive real part were observed, and also complex
eigenvalues were occasionally found. Further, our numerical results strongly suggested
that the change in the nature of the smallest eigenvalue from positive to negative real
part always occurs at an extreme value of n.

The question then becomes whether it is possible, in spite of these difficulties,
to perform calculations of this type, on the upper family branch; the answer turns
out to be affirmative. There are some similarities with those found in interacting
boundary layers involving upstream eigensolutions. In the past, two approaches have
been developed for such problems. The first involves the adjustment of a (single)
unknown upstream coefficient, in order to produce the appropriate downstream
response (Stewartson & Williams 1969). This is usually undertaken as a trial-and-
error approach, although it has been very effectively used in a number of different
problems. The second approach has been to treat the problem as if it were partially
elliptic, coupling the upstream and downstream behaviours, in order to avoid the
unbounded downstream growth of eigensolutions; this type of method was adopted
by Rizzetta, Burggraf & Jenson (1978). In the present context the latter type of
approach appears to be the more attractive, in so far as it seems likely that the trial-
and-error approach would prove highly sensitive and could easily lead to numerical
complications. The disadvantage with the ‘quasi-elliptic’ approach is the much more
substantial demands on computational resources, particularly in terms of memory
requirements; however what turns out to be the robustness of this approach offsets
this disadvantage.

The technique applied was to treat (2.36)–(2.39) using standard second-order central
differencing in both η and ξ. Early attempts at using line relaxation methods on the
algebraic system (in both the η- and ξ-directions) proved unsuccessful, and so instead
a Newton iteration scheme solving for all grid points simultaneously was adopted. If
Nξ and Nη denote the number of grid points in the ξ- and η-directions, respectively,
then the resulting system of equations can be written in banded form, symbolically

A · δX = B, (4.16)

where A is a banded array of width 16Nξ or 16Nη (the choice being the smaller of
the two) by 4NξNη long, δX is the vector of the increments of the computed function
and B a column vector of length 4NξNη . The sparseness of this system was fully
exploited.

One further point remains, namely the imposition (and nature) of the downstream
boundary conditions. From the point of view of freestream variations described by
(4.1) (and other forms for which f(ξ) → constant as ξ → ∞) it is clear that the
downstream form will certainly admit similarity-type solutions. (This will also be
true for more general forms of f(ξ), such as those involving algebraic behaviours
downstream, although the situation would be somewhat more complicated on account
of the different form of the similarity solution to that at the leading edge; these cases
are slightly more complicated, but conceptually the same.) One obvious procedure
would appear to be to impose the similarity solution corresponding to f(ξ → ∞).
An alternative to this, for classes of f(ξ) of type (4.1) (and this was our preferred
method), is to impose the zero streamwise derivative (Neumann) condition on all the
computed quantities (namely U0, Φ0, Ψ0 and θ0). This seemed to reduce the domain
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Figure 7. Streamwise development of ζ →∞ solution, n = 0.35 upper θ0(η − 0) solution at ξ = 0,
f(ξ) = 2− e−ξ (global solution scheme).

truncation errors somewhat, compared with specifying flow quantities per se, and is
entirely consistent with the imposition of a similarity solution downstream of the
same form as that at the leading edge (where we imposed a solution derived directly
from the similarity set of equations).

Figure 7 shows streamwise variations of U0η(η = 0), W0η(η = 0) and δ∗0 , with ξ,
for f(ξ) given by (4.1) and n = 0.35, computed using the global procedure involving
(4.16); note that this is identical to the problem considered unsuccessfully previously,
using marching procedures, the results of which were shown in figure 6. In this
case a smooth transition from the leading-edge state to the far-downstream state
is clearly observed, with the far-downstream solution linked to the leading-edge
solution through (4.2)–(4.4), again. (Incidentally we found that our global technique
was applicable to lower-branch solutions, although this is clearly a much less efficient
treatment of the problem than standard marching procedures.) A typical computation
involved 101 grid points in the transverse (η) direction, extending out to η ≈ 10, and
61 points in the streamwise (ξ) direction, extending to ξ = 5 or 10; the results shown
in figure 7 are graphically accurate (with an accuracy of typically 2%).

A number of numerical experiments were performed to investigate whether it is
possible to have a smooth transition from the upper θ0(η = 0) state at ξ = 0 to
the lower θ0(η = 0) state far downstream; no acceptable solutions of this type were
found, suggesting that such solutions are not possible.

5. The full problem
In computing the full problem, we choose to use working variables that (i) remain

bounded as η and/or ζ →∞, and (ii) retain the useful symmetry properties about the
corner bisector plane (in the case of symmetrical flows), which thus enables us to halve
the computational domain. To this end we retain the use of the U(ξ, η, ζ) variable,
but replace the three other dependent variables by the following ‘tilde’ variables:

Φ(ξ, η, ζ) = ηΨ0(ξ, ζ) + Φ̃(ξ, η, ζ), (5.1)
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Ψ (ξ, η, ζ) = ζΨ0(ξ, η) + Ψ̃ (ξ, η, ζ), (5.2)

θ(ξ, η, ζ) = ζθ0(ξ, η)− ηθ0(ξ, ζ) + θ̃(ξ, η, ζ). (5.3)

The governing equations for the tilde variables are not given here in the interests
of brevity, but are readily derivable from (2.23)–(2.29). It was noted in DD that
accurate domain truncation was essential for meaningful numerical results, and to
this end (2.32)–(2.35) must be treated appropriately. Setting U(ξ, η, ζ →∞)→ U0(ξ, η)
and Φ̃(ξ, η, ζ → ∞) → Φ0(ξ, η) − ηΨ0(ξ, ζ → ∞) turns out to be adequate (with a
domain truncation error of O(ζ−2)), but the O(ζ−1) terms in (2.34) and (2.35) can
be numerically significant. For this reason, using the technique employed in DD, the
following conditions were placed on Ψ̃ and θ̃ as ζ →∞:

∂

∂ζ
[ζΨ̃ (ξ, η, ζ)]ζ→∞ → Ψ1(ξ, η), (5.4)

∂

∂ζ
[ζθ̃(ξ, η, ζ)]ζ→∞ → θ1(ξ, η), (5.5)

leading to a domain truncation error of O(ζ−2), which turns out to be entirely
satisfactory. Two important rationales for having studied the ζ → ∞ asymptotes can
now be clearly seen. This enables us to subtract out the unbounded elements of
the solution as η and/or ζ → ∞ (see (5.1)–(5.3)), and also determines the boundary
conditions (5.4), (5.5) for the tilde variables as ζ →∞.

In the numerical treatment of the equations for U, Φ̃, Ψ̃ and θ̃ arising from (2.23)–
(2.29), standard second-order central differencing was used in η and ζ, whilst in the ξ-
direction a fully implicit second-order Crank–Nicolson difference scheme was applied.
The computational task involved in determining solutions corresponding to the upper
solution branch even in the limit as ζ → ∞ was seen in § 4 to be not insubstantial,
and it is to be anticipated that a numerical treatment of the full system in this region
is currently prohibitive, although the general, global solution procedure devised in § 4
could, in principle, be extended to the full problem, given sufficient computational
resources. Consequently in all cases below, we shall confine our attention to the
lower θ0(η = 0) portion of the primary solution branch, for which, as shown in § 4,
conventional parabolic marching schemes are generally applicable. Line relaxation
was applied to solve the algebraic system of equations at each ξ station. Typical
computations using a 201 × 201 grid in η and ζ, with a grid size of 0.1 × 0.1, a
streamwise grid size of ∆ξ = 0.01 and with the symmetry condition invoked along
the plane η = ζ typically took 3–4 days on a DEC Alpha 500/500 workstation (or
about 2 weeks on a Pentium 90).

Figures 8(a) and 8(b) display results for the case n = 0.35 (lower branch, in accord
with our remarks above), α = 90◦, with a favourable pressure gradient corresponding
to (4.1). As expected, both the streamwise wall shear (τ = Uη(η = 0)) and crossflow
shear stress (Wη(η = 0)) are seen to asymptote downstream to a (scaled) similarity
form, in line with (4.2)–(4.4). We note, however, that the ζ-coordinate needs also to
be scaled by a factor

√
2 in this limit. Note too that the flow in the immediate vicinity

of the wall (η = 0) is directed entirely away from the corner apex.
As an example of a non-90◦ corner angle case, consider α = 45◦, n = 0.35. Figure

9(a, b) shows distributions for τ = Uη(η = 0) =
√

2Uη∗(η
∗ = 0) and Wη∗(η

∗ = 0)
respectively, and again we see the downstream form linked to the leading-edge
state through (4.2)–(4.4) (together with the

√
2 scaling on ζ; similarity solutions for

α 6= 90◦ have been obtained by Abdulwanis 1997). We note a general reduction in the
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Figure 8. (a) τ distributions and (b) Wη(η = 0) distributions, full problem, n = 0.35 (lower branch),
α = 90◦, f(ξ) = 2− e−ξ .

magnitude of the streamwise shear stress, compared with the corresponding α = 90◦
case of figure 8, indicating again that the flow close to the wall is directed away from
the apex. Figure 9(c) shows the secondary velocity vectors in the plane ξ = 0, i.e.
the similarity solution at the leading edge. It is seen that although, as noted above,
the flow near the walls is directed away from the corner apex, closer to the corner
bisector line this is not always the case, and it is instead directed towards the apex at
distances sufficiently distant from the apex; closer to the corner, the flow is directed
entirely away from the apex. Figure 9(c–g) shows secondary velocity vectors at stations
progressively further downstream, and depict the development of the solution; the
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Figure 9(a, b). For caption see facing page.

thinning of the corner region (by the 1/
√

2 mentioned noted above) is quite noticeable
in these distributions. The overall flow features are retained throughout the transition
of the flow between the leading-edge and downstream states. In figure 9(h) we show
the secondary velocity vectors for the other similarity solution, corresponding to the
upper θ0(η = 0) solution (to re-iterate, it is impractical to compute non-similarity
solutions originating from this solution, due to the limitations discussed above). This
figure is to be compared directly with figure 9(c). In the case of this second similarity
solution, we see that the flow in the vicinity of the walls is not unidirectional, but
directed towards the apex for ζ∗ > 5.5 approximately (recall (2.22) for the link between
ζ∗ and ζ when α 6= 90◦), and away from the apex for ζ∗ less than this value. Closer to
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the corner bisector line the flow is entirely directed away from the apex. We therefore
see that the two similarity solutions are quite distinct with regard to the secondary
velocity field.

We next turn to an example involving an adverse pressure gradient, specifically
n = 0.35 (lower branch), α = 90◦, with the free-stream velocity function f(ξ) = e−ξ .
Results for this case are shown in figures 10(a) (τ = Uη(η = 0)) and 10(b) (Wη(η = 0)).
We note here that strictly, results become invalid if U(ξ, η, ζ) < 0, which first occurs
in this case just after ξ = 1.2. Importantly, we note that (i) all the indications are
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Figure 10(a, b). For caption see facing page.

that flow reversal (at least close to the apex) occurs in a completely regular fashion,
and (ii) flow reversal occurs earlier than in the ζ → ∞ limit, in particular this seems
to occur in the immediate vicinity of the corner itself. Figure 10(c) shows the vector
plots of (Uη(η = 0),Wη(η = 0)) up to (and just beyond) flow reversal, and illustrates
the general transport of fluid (near the wall) away from the corner, particularly as
flow reversal occurs. We note that in this case, however, further downstream, close
to the corner, a small region exists wherein the flow is directed towards the corner,
albeit of small magnitude.

Figures 11(a) (τ distribution) and 11(b) (Wη(η = 0) distribution) show results for
n = 0 (lower branch solution), all other parameters being as in figure 10. Again flow
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reversal sets in earlier in this full problem compared with the asymptotic ζ → ∞
problem studied in § 4, and again all the indications are that flow reversal quite
regularly but much sooner than in the previous (n = 0.35) case, at just after ξ = 0.06.
This suggests, as we expect, that a favourable pressure gradient delays occurrence of
flow reversal in corner flows. In this case the bulk of the fluid close to the wall is
directed away from the apex, although in the vicinity of the apex the flow is directed
towards the corner; this effect is seen all the way from the leading edge to the flow
separation point.

6. Conclusions
In this paper we have extended the work of DD to include consideration of non-

90◦ corner angles, wall transpiration and, perhaps more importantly, non-similarity
solutions. The formulation is quite general, and is applicable to obtuse as well as acute
corner angles. The numerical results of § 3 coupled with the theoretical/asymptotic
results in the Appendices gives some rare insight into the nature of grossly separated
three-dimensional flows, and confirms the existence of non-unique solutions, so often
encountered in this class of flow. These flows are quite generic in nature, involving
displaced shear layers above a region of relatively stagnant flow.

The existence of the leading-edge eigensolutions in a number of flow regimes has
serious repercussions for boundary-layer calculations of this type. They significantly
intensify the computational efforts in the numerical task and lead to prohibitive
requirements on computational resources in the case of the fully three-dimensional
problem, even with the modern generation of computer hardware. Our analysis
demonstrates the nature of the difficulty in the limiting, |ζ| � 1, regime, but the same
holds with regard to the full computation. The question as to which of the various
non-unique solutions would be observed in practice remains to be settled.

A further important observation is that here three-dimensionality appears to alle-
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viate the classical two-dimensional Goldstein (1948) singularity, which is always en-
countered at flow separations (when the streamwise pressure gradient is prescribed),
but which our numerical results seem to suggest is avoided, at least in the immediate
vicinity of the apex of the corner (but not at large distances from the corner). We
note that in the cases tackled (and we have no reason to doubt that these effects are
quite generic), the onset of flow reversal can be significantly hastened by a reduction
in the value of the pressure gradient parameter n.

The present paper also highlights still further explanations for the difficulties in
the observation of stable, laminar, similarity, corner-type boundary layers, as noted
by Zamir (1981). DD (and confirmed here) found that the main, attached solution
branch only exists for n > −0.018 (approximately), suggesting that a very small
adverse pressure gradient could easily lead to a pressure gradient parameter less than
this critical value, thereby disrupting the similarity solution completely; indeed Zamir
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(1981) reports on the difficulties with leading-edge effects and with achieving zero
pressure gradient flows. The work of DD also reveals that even slight asymmetries
to the problem can also cause significant disruptions to the flow (including major
changes to the critical value of n above which attached solutions exist); such effects
could easily be induced by slight asymmetry/misalignment in the experiments. Further
still, it is suggested from the work of Lakin & Hussaini (1984), Dhanak (1993) and
Balachandar & Malik (1995) that the flow becomes more unstable (i.e. exhibits higher
growth rates and lower critical Reynolds numbers) as the apex is approached. The
present work opens up still further possible reasons for these experimental difficulties.
Adverse pressure gradients can trigger flow separations, which even though these
may be regular in fashion, nonetheless occur sooner close to the apex (compared with
at large distances), and will be susceptible to transition. Further, small changes in
pressure gradient can substantially affect the stability characteristics of the flow, as
shown in DD. The presence of the leading-edge eigenstates described in § 4 raises yet
further possibilities, including that of by-pass transition linked to steady, algebraic
(spatial) growth.

Finally, we have been unable as yet to predict which of the two primary states
(upper and lower branches) will be observed in practice/experiment; this could
depend on the particular details of any given configuration. To attempt to resolve
these important issues, the authors are currently undertaking a series of experiments
on flows of this type.

The authors gratefully acknowledge the support of NATO and EPSRC, and a
number of useful conversations with Professors A. I. Ruban and S. I. Chernyshenko.

Appendix A. Evaluation of θ0η(η = 0)

Here we determine the value of θ0η(η = 0). As noted in § 2 we may set α = 90◦
without any loss of generality, and then in the limit as ζ → ∞ we write (in addition
to (2.32)–(2.35)) that

V ∗(ξ, η, ζ) = V0(ξ, η) + O(ζ−2), (A 1)

W ∗(ξ, η, ζ) = ζW0(ξ, η) + O(1), (A 2)

P (ξ, η, ζ) = 1
2
ζ2P̂ 0(ξ, η) + O(ζ). (A 3)

From (2.4) we must have that

P̂ 0η = 0, (A 4)

implying no variation of the secondary pressure across the boundary layer, which,
using the crossflow momentum equation (2.5) leads to

−√2P̂ 0 +W0ηη = U0(1− n) [−2W0 + ξW0ξ − ηW0η

]
+
√

2V0W0η +
√

2W 2
0 . (A 5)

We also note that on account of the flow symmetry about η = ζ, as η →∞
W0 → − 1√

2

[
nf(ξ) +

(1− n)
2

ξfξ

]
. (A 6)

Consequently we see that taking the limit as η →∞ of (A 5) together with (A 6) yields

P0 =
ξf

4

[
(1− n2)fξ + ξ(1− n)2fξξ

]− 1

2

[
nf +

ξ

2
(1− n)fξ

] [
(2− n)f +

ξ

2
(1− n)fξ

]
.

(A 7)
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Taking η = 0 in (A 5) above leads to

W0ηη(η = 0) =
√

2P̂ 0 − g(ξ)W0η(η = 0), (A 8)

and from the streamwise momentum equation (2.37) evaluated on η = 0 we have

U0ηη(η = 0) = −2nf2 − ξ(1− n)ffξ − g(ξ)U0η(η = 0). (A 9)

Taking (A 5)–(A 8) together leads to the conclusion that

θ0η(η = 0) =
[
nf(ξ) + 1

2
(1− n)ξfξ]2

− 1
2
ξf
[
(1− n2)fξ + ξ(1− n)2fξξ

]− g(ξ)θ0(η = 0). (A 10)

This result is important, because it serves to characterize the various families of
solution. In particular setting ξ = 0, and correspondingly f(0) = 1 (i.e. focusing on
similarity, rather than developing solutions), leads to

θ0η(η = 0) = n2 − g(0)θ0(η = 0). (A 11)

Crucially, this formula characterizes all the far-field family of solutions (with symmetry
about η = ζ) described in DD. Analogous formulae may be derived in the case of
flows without symmetry on η = ζ.

Appendix B. The limit of large suction with n = 0

Here we consider the large-suction limit as g(0)→∞ for the zero-pressure gradient
case n = 0. For convenience we write ∆ = g(0) as a measure of the suction magnitude.
Figure 2 clearly shows that the two solution branches remain distinct as suction
increases, and must therefore be considered separately. We note that U0η(η = 0) and
θ0(η = 0) both seem to increase without bound as ∆→∞ in both cases. Consider first
the two-dimensional branch (which turns out to correspond to the classical results of
Pretsch 1944; Watson 1947; and Rosenhead 1966), by writing

Φ0 = ∆+ ∆−1Φ̂0(η̂) + · · · , (B 1)

U0 = Û0(η̂) + · · · , (B 2)

Ψ0 = Ψ̂ 0(η̂) + · · · , (B 3)

θ0 = ∆θ̂0(η̂) + · · · , (B 4)

where we define a thin sublayer

η = η̂/∆, η̂ = O(1), (B 5)

and we find

Û0 = 1− e−η̂ , (B 6)

Φ̂0η̂ = Ψ̂ 0 = Û0, (B 7)

θ̂0 = Û0η̂ (B 8)

(the first term in the Φ0 expansion is clearly necessary on direct account of the suction,
per se). This solution satisfies all the necessary freestream conditions, corresponding
to the asymptotic suction profile, and hence completes the description of this solution
branch (which we note is confined to a thin, η = O(∆−1) sublayer).

The other (three-dimensional) branch is somewhat more complicated, involving
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a multi-layered structure. Our numerical results indicate for this branch that the
streamwise shear U0η(η = 0) increases at approximately the same rate as that of the
two-dimensional branch, whilst the value of θ0(0) increases quite considerably faster
than its two-dimensional counterpart. This (partly) leads us to suggest an asymptotic
series of the form

U0 = Û0(η̂) + · · · , (B 9)

Φ0 = ∆+ δ∆Φ̂0(η̂) + · · · , (B 10)

Ψ0 = δ∆2Ψ̂ 0(η̂) + · · · , (B 11)

θ0 = δ∆3θ̂0(η̂) + · · · , (B 12)

where η̂ is defined by (B 5), and we assume implicitly that 1 � |δ| � ∆−1; at this

stage δ is not defined. It is not unreasonable that Û0(η̂) is given by the asymptotic
suction profile (B 6), whilst the other leading-order terms are expected to be governed
by

θ̂0η̂η̂ + θ̂0η̂ = 0, (B 13)

θ̂0 = Ψ̂ 0η̂ , (B 14)

Ψ̂ 0 = −Φ̂0η̂ , (B 15)

and so (implementing the boundary conditions)

Φ̂0 = A
[
1− e−η̂ − η̂] , (B 16)

where A = θ̂0(η̂ = 0) is a constant, and θ̂0 and Ψ̂ 0 can be simply inferred from
differentiation, via (B 14) and (B 15); indeed, in all that follows the corresponding
values of the θ0 and Ψ0 quantities may be deduced from these two equations.

Clearly a breakdown must occur when the second-order term of Φ0 becomes
comparable to O(∆), i.e. when η increases to

η =
η̃

δ∆
, η̃ = O(1). (B 17)

In this zone, which is much thicker than the previous layer, but still thin compared
with the original boundary-layer thickness, the previous solution leads us to expect

Φ0 = ∆Φ̃0(η̃) + δ∆Φ̃1(η̃) + · · · (B 18)

(with U0 unity to leading order) which leads to the following (inviscid) equation:

Φ̃0η̃η̃η̃Φ̃0 − Φ̃0η̃Φ̃0η̃η̃ = 0. (B 19)

An exact solution to the above system seems to be appropriate here, specifically

Φ̃0 = e−Aη̃ (B 20)

(where the constants of integration have been chosen to be consistent with the
matching conditions as η̃ → 0).

It turns out (for later purposes), that we do need to consider higher-order quantities:
in particular we demand that viscous effects are important in this respect, and the
requirement to match with the exponentially small term in (B 16), and this leads to
the ‘solution’

Φ̃1η̃η̃η̃ = A exp [(e−Aη̃ − 1)/Aδ]. (B 21)
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The associated quantities may be deduced from (B 14) and (B 15), with the subscript
zeros replaced by ones. Although these quantities are very small, nonetheless it will
be seen they play an important role at a later stage. Yet another breakdown occurs,
when η̃ increases, specifically when

η̃ = O(−(1/A) log δ), (B 22)

where the viscous term becomes important again to leading order. To describe this
region we write the solution in the following form:

η = − 1

A∆δ
log δ +

1

∆δ
η∗, η∗ = O(1), (B 23)

Φ0 = ∆δΦ∗0(η
∗) + · · ·+ E∆δ2Φ∗1 + · · · , (B 24)

where

E = e−1/Aδ. (B 25)

Note that although, notionally, the E-terms are exponentially small, nonetheless this
turns out to be crucial below. The η∗ = O(1) zone corresponds to a relatively thick
displaced layer, and leads to the system

Φ∗0η∗η∗η∗η∗ + Φ∗0Φ
∗
0η∗η∗η∗ − Φ∗0η∗η∗Φ∗0η∗ = 0. (B 26)

Again, somewhat fortuitously, an exact, relevant solution of this system may be
obtained, given by

Φ∗0 = A+ e−Aη
∗
. (B 27)

The O(E) (seemingly exponentially small) terms are determined from a linearized
form of (B 26), i.e.

Φ∗1η∗η∗η∗η∗ + Φ∗1Φ
∗
0η∗η∗η∗ + Φ∗0Φ

∗
1η∗η∗η∗ − Φ∗1η∗η∗Φ∗0η∗ − Φ∗0η∗η∗Φ∗1η∗ = 0, (B 28)

and it seems not unreasonable to demand that |Φ∗1| � e−Aη∗ as η∗ → ∞, a property
that will be used below. The next breakdown occurs when Ψ0 becomes O(1), which
turns out to have the same thickness as the previous η∗ = O(1) layer, but further
displaced from the wall. This is accomplished by setting

η = − 1

A∆δ
log δ +

1

∆δA
log(δ2∆2) +

η1

δ∆
, η1 = O(1), (B 29)

with

Φ0 = ∆δA+
1

∆δ
Φ̄0(η1) + · · · , (B 30)

and U0 = 1 in this zone to leading order, again.
This leads to the solution

Φ̄0 = η1 + e−Aη1 + C1, (B 31)

where C1 is some constant (undetermined to this order).
In order to match with the η∗ → ∞ solution (in particular with the higher-order

terms), we must have to leading order

Aδ ≈ 1

2 log∆
. (B 32)

The fact that A and δ are determined together is not surprising, given that these
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Figure 12. Variation of U0η(η = 0), δ∗ and θ(η = 0) with ∆ (suction parameter), n = 0.

quantities appear together to leading order. Note that higher-order terms are likely to
affect (B 32), leading to log log∆ and higher terms. Figure 12 shows the variation of
numerically calculated values of 2 log∆θ0(η = 0)/∆3, 2 log∆δ∗/∆ and U0η(η = 0)/∆
with ∆ = g(0), where δ∗ = [Φ0(η)− η]η→∞, quantities that should approach unity as
∆→ ∞. The agreement with the asymptotic theory is not unsatisfactory, particularly
given the ‘largeness’ of the small parameter 1/ log∆ even at the higher values of ∆,
and the likely (significant) correction terms of the form log log∆ which, as pointed
out above, are likely to occur a higher order. The solution therefore takes on a
four-tiered structure, this feature distinguishing this solution branch from the other
(two-dimensional) solution branch described earlier.

Appendix C. The limits of blowing (n = 0)

Consider next other aspects of the results shown in figure 2, showing the variation
of the shear stress distribution, for n = 0, with g(0), in particular in the limit as
the flow separates, i.e. as U0η(η = 0) → 0. We note that solutions cease to exist
beyond this limit (indeed, it is hardly surprising the zero pressure gradient condition
does not exhibit reversed-flow solutions), and figure 2 shows that four such critical
points exist. The point g(0) = −C2D = −0.875747 . . . corresponds to the classical two-
dimensional result, as detailed in Rosenhead (1966). The three other terminal points all
represent truly three-dimensional flows. These occur at g(0) = −C3Da = −1.18727 . . . ,
g(0) = −C3Db = −0.66204 . . . , and finally as g(0) → 0. With the exception of this
last case (which will be considered independently, later), for all cases the limit as
g(0) → −C(n) can be considered simultaneously; note that for C2D we have the
two-dimensional conditions detailed in (B 7), (B 8), namely

U0 = Ψ0 = Φ′0(η̄), (C 1)

θ0 = Φ′′0(η̄). (C 2)

Inspection of the solutions close to these critical (terminal) values clearly reveals a
displaced shear layer behaviour, the location of which increases without bound as the
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critical value of g(0) is approached. Indeed this shear layer behaviour is found to be
quite a universal flow feature. In order to understand the flow as g(0) → −C(n), we
write

g(0) = −C(n) + ε1, (C 3)

where 0 < ε1 � 1. Turning first to the shear layer itself, assuming this becomes
increasingly displaced from the wall, it is appropriate to set

η = Λ+ η̄, (C 4)

where Λ(ε1)� 1, and η̄ = O(1), together with

U0 = U00(η̄) + · · · , Φ0 = Φ00(η̄) + · · · ,
Ψ0 = Ψ00(η̄) + · · · , θ0 = θ00(η̄) + · · · . (C 5)

This assumes the shear layer remains of thickness comparable to the original
boundary-layer thickness. The governing equations are then

2U00 = Φ00η̄ +Ψ00, (C 6)

U00η̄η̄ + Φ00U00η̄ = 0, (C 7)

θ00 = Ψ00η̄ , (C 8)

θ00η̄η̄ − 2U00U00η̄ + θ00η̄Φ00 +Ψ00θ00 + 2U00θ00 = 0. (C 9)

The boundary conditions to be applied to this system as η̄ → ∞ are that free-stream
conditions are approached, i.e. that

U00(η̄)→ 1, Φ00η̄ → Ψ00 → 1, θ00 → 0. (C 10)

This may be regarded as a three-dimensional (incompressible) counterpart of the
Chapman (1950) shear layer problem, and as such the appropriate boundary condi-
tions as η̄ → −∞ are

U00(η̄), Φ00η̄(η̄), Ψ00(η̄), θ00(η̄)→ 0, (C 11)

corresponding to relatively stagnant conditions below the shear layer. Results for the
U00(η̄) and W00(η̄) profiles are shown in figure 13 where the solid line relates to the
C3Da root, the short-dashed line to the C3Db root and the long-dashed line to the C2D

root (which we note has W00 ≡ 0). The conditions as η̄ → −∞ above may be refined
(and this will be necessary for later purposes) to the following

Φ00(η̄)→ −C(n) + α1e
C(n)η̄ + · · · , (C 12)

U00(η̄)→ α2e
C(n)η̄ + · · · , (C 13)

Ψ00(η̄)→ α3e
C(n)η̄ + · · · , (C 14)

θ00(η̄)→ α4e
C(n)η̄ + · · · , (C 15)

where α3 = 2α2 − α1C(n) and α4 = C(n)α3. As with the Chapman (1950) problem,
there is no absolute origin to the η̄-coordinate; we are at liberty to arbitrarily specify
this (in principle the determination of this can be achieved at higher order and
incorporated into Λ) and to this end we set Φ00(η̄ = 0) = 0. Our computations
then led to the following values (where here we define δ∗ = [Φ(η̄)− η̄]η̄→∞): for
C2D , α1 = 1.1549 . . . , α2 = 1.01143 . . . (with α3 = α2), δ

∗ = −0.37396 . . . ; for C3Da

α1 = 1.0109 . . . , α2 = 1.709 . . . , δ∗ = 0.313 . . . (intriguingly our computations for this
case, undertaken with some care, suggested that |α3| < 10−5, very strongly pointing
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Figure 13. U00 and W00 profiles across the asymptotic shear layer.

to the condition that α3 = α4 = 0, implying 2α2 = α1C3Da); for C3Db, α1 = −0.1506 . . . ,
α2 = 0.7233 . . . , δ∗ = −0.16547 . . . .

As noted above, to leading order the region between the wall and the shear layer is
one of relatively stagnant flow (|U0| � 1), with uniform Φ0 = −C(n). We next consider
the second-order terms in this region (retaining the original η variable), writing

Φ0 = −C(n) + ε1Φ̃01(η) + · · · , (C 16)

with

η = O(1), (C 17)

and we must therefore have that

U0 = ε1Ũ01(η) + · · · (C 18)

(Φ0, Ψ0 and θ0 are also O(ε1) in this region). The only meaningful result (imposing
no slip on η = 0) is that

Ũ01(η1) = C1(1− eC(n)η), (C 19)

where C1 is a constant, whilst proper matching between this zone (C 19) and the shear
layer (C 13) requires

Λ ≈ − log ε1

C(n)

, (C 20)

and C1 must be determined at higher order.
Turning now to the terminal point at g(0) = 0, in this case again inspection of the

velocity (and other) profiles strongly suggests that a massively displaced shear layer
of the form (C 6)–(C 11) is appropriate. We set in this case g(0) = −ε1, and consider
the limit ε1 → 0. Further, figure 14 shows Φ0(η) (broken line) and U0(η) (solid line)
profiles at g(0) = −0.2,−0.15,−0.1. It is quite clear that the shear layer is of the
form described above, for the particular case corresponding to C3Da, but instead of



156 P. W. Duck, S. R. Stow and M. R. Dhanak

0

g

1.0

0.8

0.6

0.4

0.2

40

0

–0.2

–0.4

–0.6

–0.8

–1.0
80 120

g(0) = –0.2 g(0) = –0.15 g(0) = –0.1

U0
U0

Figure 14. U0 and Φ0 profiles for g(0) as indicated, n = 0.

a region of relatively uniform Φ0 between this shear layer and the wall (as occurs in
the previous three terminal states), in the present case this can no longer be so.

Close inspection of our numerical results suggests that in the region between the
wall and some distance off the wall, Φ0 ≈ g(0). Further, since it is possible to show
(see Appendix A) that for n = 0, θ0η(0) = −g(0)θ0(0), then the appropriate lengthscale
is η = O(1/ε1). However in this region the indication from our computations is also
that |Ψ0|, |θ0| are exceedingly small (certainly at least exponentially small), and |U0|
is even smaller. Taken together, these trends suggest we need to define the thick scale

η =
η2

ε1

, η2 = O(1), (C 21)

wherein

Φ0 = −ε1 + δΦ01(η2) + · · · , (C 22)

Ψ0 = δε1Ψ01(η2) + · · · , (C 23)

θ0 = δε2
1θ01(η2) + · · · , (C 24)

and |U0| is again even smaller than any of the other three basic quantities, and here
|δ| � ε1 and will be determined later.

The solution of the above quantities is then straightforward, yielding

Φ01 = A0 [eη2 − η2 − 1] , (C 25)

Ψ01 = −A0 [eη2 − 1] , (C 26)

θ01 = −A0e
η2 , (C 27)

where A0 is a constant. There must then be a breakdown of the above when the O(δ)
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and O(ε1) terms in the Φ0 expansions become comparable. This occurs when

η = ε−1
1 log(ε1/δ) + ε−1

1 η̃, (C 28)

wherein η̃ = O(1), and

Φ0 = ε1Φ̃(η̃) + · · ·+ δ log(ε1/δ)Φ̃1(η̃) + · · · . (C 29)

The dots after the leading term denote intermediate-order terms, which are not
important for our purposes. Again we have that |U0| � |Φ0|. This leads to the
following equation for Φ̃:

Φ̃η̃η̃η̃ + Φ̃Φ̃η̃η̃ − Φ̃2
η̃ = 0, (C 30)

with, as η̃ → −∞,

Φ̃→ −1 + A0e
η̃ , (C 31)

where A0 is a positive constant. Indeed, it seems that (C 31) is a perfectly acceptable
exact solution of (C 30) for all values of η̃.

The higher-order (subscript 1) quantities are determined through a linearized form
of (C 30), namely

Φ̃1η̃η̃η̃ + Φ̃Φ̃1η̃η̃ + Φ̃1Φ̃η̃η̃ − 2Φ̃η̃Φ̃1η̃ = 0, (C 32)

from which it seems that as η̃ →∞
Φ̃1η̃η̃η̃ ∼ −A1 exp (A0e

η̃), (C 33)

where A1 is a constant.
A further breakdown will occur when the leading-order flow quantities become

O(1), i.e. when

η̃ = − log ε1. (C 34)

This then leads to a regime where Φ0, U0, Ψ0 and θ0 are all O(1), determined by the
system (C 6)–(C 11), with {U00, Φ00, Ψ00, θ00} replaced by {U0, Φ0, Ψ0, θ0}, with

η = ε−1
1 log

1

δ
+ η̄, η̄ = O(1). (C 35)

This corresponds to a grossly displaced shear layer, whose thickness is comparable to
that of the original boundary-layer thickness encountered earlier. In order that there
is a proper match between the η̃ = O(1) and η̄ regimes we require

A0 = C3Da (C 36)

which confirms the positive value of A0. If we now (reasonably) assume that the
subscript 1 term in (C 29) also becomes O(1) (or at least � O(δ)) in the shear layer,
then we are led to the conclusion that

δ ≈ e−A0/ε1 . (C 37)

This leads to the further conclusion that the location of the shear layer is
given by η ≈ O(ε−2

1 ). Indeed, figure 15 shows the variation of −ε1 log(θ0(η = 0))
and − log δ∗/ log ε1 with ε1 (where δ∗ = [Φ0(η)− η]η→∞), which according to our
asymptotic approach given above should approach C3Da and 2 respectively; the
agreement with our numerical results is encouraging, particularly given the prepon-
derance of logarithmic terms in the analysis. (Unfortunately computations beyond
g(0) = −ε1 ≈ −0.075 proved prohibitive, and results are therefore terminated at this
value.)
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Figure 15. Variation of θ0(η = 0) and δ∗ with ε1 = −g(0).

Appendix D. The limit as n→ 0− (displaced shear-layer, reversed-flow
solution branches, no transpiration)

Here we address the question of the nature of the small solution branch as n→ 0−,
i.e. the branch close to the origin in figure 1(a) (for the choice g(0) = 0), a question
that turns out to be inherently coupled to the work in the previous Appendices.

It is well known (Rosenhead 1966) that the two-dimensional Falkner–Skan family
of solutions exhibits a degree of non-uniqueness for n < 0, with a second class of
solutions which exhibit backflow (the extent of the reversed-flow region increasing
without bound as n → 0− in our notation). In the present work, an analogous class
of solution arises, although in our case these solutions are not directly connected to
the primary solution branch (as n varies), but appear as an independent branch. This
branch, itself, involves two solutions (making a total of four solutions for n→ 0−).

Treating |n| as our small parameter, we suggest the η domain decomposes into two
distinct zones. As n → 0−, observed shear layers form in both the upper and lower
branches and (C 4) is again appropriate, but here we take Λ ≡ Λ(n)→∞ as n→ 0−.
The nature of the flow profiles (U0(η) and Φ0(η)) is shown in figures 16(a) and 16(b),
for n = −0.009,−0.006,−0.004. The solid lines correspond to the lower portion of
this particular solution branch (i.e. θ0(η) < 0), the broken lines to the upper portion.
Figure 16(b) suggests that the shear layer is described by (C 6)–(C 11), again for the
particular case considered above Φ00|η̄→−∞ = C3Da, for both solution branches.

Therefore, fortunately no further computations are necessary for this aspect of
the work, since we are able to determine all the information required from our
transpiration results, in particular those shown in figure 13. The details of the shear
layer correspond precisely with the limiting values of g(0) → C3Da for which both
θ0(η) and U0η(0) approach zero.

We now consider the layer that forms between the wall and the shear layer. This
turns out to be quite thick in comparison with the original boundary layer, as well as
the shear layer. The solution develops in the following manner

U0 = |n|1/2Ũ00(η̃) + · · · , (D 1)
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Figure 16. (a) U0 profiles and (b) Φ0 profiles, g(0) = 0, n as indicated.

Φ0 = |n|1/4Φ̃00(η̃) + · · · , (D 2)

Ψ0 = |n|1/2Ψ̃ 00(η̃) + · · · , (D 3)

θ0 = |n|3/4θ̃00(η̃) + · · · , (D 4)

with

η = |n|−1/4η̃. (D 5)
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These lead to the following system of equations (assuming n < 0):

2Ũ00 = Φ̃00η̃ + Ψ̃ 00, (D 6)

θ̃00 = Ψ̃ 00η̃ , (D 7)

Ũ00η̃η̃ − 2 + Φ̃00Ũ00η̃ = 0, (D 8)

θ̃00η̃η̃ − 2Ũ00Ũ00η̃ + θ̃00η̃Φ̃00 + Ψ̃ 00θ̃00 + 2Ũ00θ̃00 = 0, (D 9)

with

Ũ00(η̃ = 0) = Φ̃00(η̃ = 0) = Ψ̃ 00(η̃ = 0) = θ̃00η̃(η̃ = 0) = 0. (D 10)

Inspection of the above system as η̃ →∞ suggests the following behaviour:

Φ̃00 ∼ A00η̃
√

log η̃ + · · · , (D 11)

Ũ00 ∼ 4

A00

√
log η̃ + · · · , (D 12)

Ψ̃ 00 ∼
(

8

A00

− A00

)√
log η̃ + · · · , (D 13)

θ̃00 ∼ 1

2η̃
√

log η̃

(
8

A00

− A00

)
+ · · · , (D 14)

where four values of A00 are possible, namely

A00 = ±2,±√12. (D 15)

The next stage in the solution process is best seen by inspection of the Φ̃00 term.
In particular we see that Φ0 = O(1) when η ≈ O([|n| log |n|−1/4]−1/2). Using this result
enables us to match with the shear layer and leads first to

Λ ≈ η0[|n| log |n|−1/4]−1/2, η0 = O(1), (D 16)

and secondly to

A00η0 = −C3Da. (D 17)

Because C3Da > 0 the only meaningful conclusion is that A00 = −2,−√12. These both
correspond to reversed flow in this sublayer, and also highlight the non-uniqueness
found numerically in the problem. The region between the shear layer and the
O(|n|−1/4) zone is basically an inviscid one, and is somewhat passive in nature,
comprising just a uniform, slow (reversed) flow. We therefore have the two values of
η0 being given by η0 ≈ C3Da/2, C3Da/

√
12. These results are not inconsistent with the

results shown in figures 16(a) and 16(b). There was clear evidence in our numerical
results of the minimum of Φ0 reducing as n→ 0−; there was absolutely no evidence
of this approaching any value other than −C3Da, and other numerical results (not
shown here), strongly point to the the minimum value of U0 decreasing in magnitude
as n → 0−, consistent with the asymptotic results above. We note that the above
results are in quite close agreement with those of Stewartson (1954), who used a
somewhat more heuristic treatment of the problem for the two-dimensional limiting
case (although this is not directly relevant here). Finally note that the choice A00 = −2
is likely to give rise to θ0(0) < 0 (lower branch solution), whilst A00 = −√12 is likely
to lead to θ0(0) > 0 and hence the upper branch solution. In this respect, it is worth
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mentioning the work of Smith (1984), in which two-dimensional, grossly separated
Chapman layers were also encountered.
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